This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

## Structure of the Polymer Obtained from Bisphenol-A and Cl 2 P(O)CH 3

Ludovic Kurunczi<sup>ab</sup>; Simona Timofei<sup>b</sup>; Smaranda Iliescu<sup>b</sup>

<sup>a</sup> University of Medicine and Pharmacy, Timisoara, Romania <sup>b</sup> Institute of Chemistry Timisoara, Timisoara, Romania

Online publication date: 27 October 2010

To cite this Article Kurunczi, Ludovic , Timofei, Simona and Iliescu, Smaranda(2002) 'Structure of the Polymer Obtained from Bisphenol-A and Cl 2 P(O)CH 3', Phosphorus, Sulfur, and Silicon and the Related Elements, 177: 6, 1713 - 1716

**To link to this Article: DOI:** 10.1080/10426500212311

**URL:** http://dx.doi.org/10.1080/10426500212311

### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur and Silicon, 2002, Vol. 177:1713–1716 Copyright © 2002 Taylor & Francis 1042-6507/02 \$12.00 + .00

DOI: 10.1080/10426500290093108



# STRUCTURE OF THE POLYMER OBTAINED FROM BISPHENOL-A AND Cl<sub>2</sub>P(O)CH<sub>3</sub>

Ludovic Kurunczi, <sup>a,b</sup> Simona Timofei, <sup>b</sup> and Smaranda Iliescu<sup>b</sup> University of Medicine and Pharmacy, V. Babes Timisoara, Timisoara, Romania<sup>a</sup> and Institute of Chemistry Timisoara, Timisoara, Romania<sup>b</sup>

(Received March 15, 2001; accepted December 25, 2001)

Using the step-by-step build-up approach, the possible conformations of compound  $PhOP(O)(Me)OPh(Me)_2Ph$  were constructed and geometrically optimized. Among the obtained structures 32 conformations belonging to low, comparable energy levels were used to construct the most stable dimers and tetramers of the title polymer. The results allowed us to estimate the geometrical structure of the polymer.

*Keywords*: Bisphenol-A; conformational analysis; Me-phosphonates; polymer; polymer structure

#### INTRODUCTION

Polyphosphonates built up from bisphenol A and different phosphonic dichlorides are useful flame-retardant engineering plastics with a partially crystalline structure. The degrees of order and some other properties, such as glass transition temperatures, strongly depend on the chemical constitution and geometrical structure of the polymer. Here we tentatively analyze the geometrical structure of the  $-[\mathrm{OP}(\mathrm{O})(\mathrm{CH_3})\mathrm{OC_6H_4C}(\mathrm{CH_3})_2\mathrm{C_6H_4}]_n-$  polymer, based solely on intramolecular factors.

### CONFORMATIONAL ANALYSIS AND CONCLUSIONS

A tentative 3-D structure for **1** was established by conformational analysis of compound **2**. The phenyl ring I from **2** mimics the presence of the corresponding structural unit in the monomer (n-1).

Address correspondence to Ludovic Kurunczi, University of Medicine and Pharmacy, V. Babes Timisoara, P-ta E. Murgu 2, 1900–Timisoara, Romania.

E-mail: dick@acad-tim.utt.ro

In the conformational search the "build-up" approach<sup>1</sup> was used: joining together smaller fragments in known low energy structures obtained previously generates the structure of the complex molecule. All the calculations are performed using the HyperChem 5 package with the following parameters: AM1 Hamiltonian, SCF convergence  $10^{-5}$ , Polak Ribiere geometry optimization algorithm, gradient at convergence  $10^{-2}$ .

The conformational search begins with the analysis of two compounds: (i), MeP(O)(OMe)OPh; (ii), PhC(Me)<sub>2</sub>Ph. For (i), based on our previous experience, the OMe group is constrained in the sp position related to the P=O bond, and rotations around the P-O(Ph) and O-C(Ph) bonds are allowed. For (ii), rotation angles around the two (Me)C-C(Ph) bonds are the variable parameters. Energy maps were constructed depending on the rotation angles. Figure 1 illustrates the

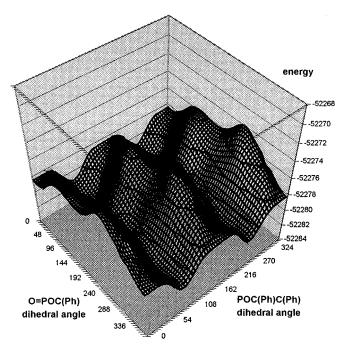



FIGURE 1 The 3D map of the energy of MeP(O)(OMe)OPh function of the two allowed rotation angle.

case of (i). Searching the maps for (i), respectively (ii) three, and respectively two independent conformations were identified. Using the corresponding dihedral angles obtained for compound (i), all the possible conformations were constructed and geometrically optimized for (iii), MeP(O)(OPh)OPh. In this step 8 conformers were obtained, 4 being mirror images of the other 4. Based on the results obtained for (ii) and (iii), the possible conformations for compound 2 were built up and geometrically optimized.

At the end of this step 64 conformations were found: 16+16 mirror images belonging to low, comparable energy levels (a gap of 0.38 kcal/mole), and 16+16 belonging to two groups with higher energy (with about 1.1, respectively 2.1 kcal/mole). In Table I some structural characteristics are presented for the first 16 conformations of **2**.

The first 32 conformations of **2** were used to construct the most stable dimers of **1**, by the superposition of the phenyl rings I and III for the consecutive monomers. 1015 sterically allowed structures were processed. Generally the conformation of the individual monomer units remained conserved in the optimization process. The most stable O=POC(Ph) torsion angles around each P atom are those that belong to the sp-sc structures, as compared to the sc-sc pairs. Energetically

**TABLE I**<sup>a</sup> Structural and Energetic Characteristics of the Most Stable Conformations of Compound 2

|    | P   | PI  | PII | Ph  | Ph  | $\Delta H_{form}$ (kcal/mole) | μ (D)         |
|----|-----|-----|-----|-----|-----|-------------------------------|---------------|
| 1  | +ac | +sp | -sc | +sc | +sc | -111.596 (-111.594)           | 1.975 (1.969) |
| 10 | +ac | +sp | -sc | +ac | +ac | $-111.346\ (-111.344)$        | 2.108 (2.103) |
| 8  | +ac | +sp | -sc | -ac | -ac | -111.472(-111.470)            | 2.009 (2.039) |
| 5  | +ac | +sp | -sc | -sc | -sc | -111.495  (-111.497)          | 1.860 (1.886) |
| 3  | -ap | -sc | +sp | +sc | +sc | $-111.524\ (-111.525)$        | 2.049 (2.069) |
| 6  | -ap | -sc | +sp | +ac | +ac | -111.483  (-111.491)          | 2.097(2.111)  |
| 4  | -ap | -sc | +sp | -ac | -ac | $-111.520\ (-111.515)$        | 1.895 (1.888) |
| 2  | -ap | -sc | +sp | -sc | -sc | -111.532  (-111.533)          | 1.850 (1.857) |
| 16 | -ap | +sc | +sc | +sc | +sc | $-111.207\ (-111.210)$        | 2.929 (3.063) |
| 7  | -ap | +sc | +sc | -ac | -ac | -111.471(-111.476)            | 2.785(2.902)  |
| 9  | -ap | +sc | +sc | +sc | +sc | -111.399  (-111.399)          | 2.777(2.780)  |
| 13 | -ap | +sc | +sc | -sc | -sc | $-111.310 \; (-111.311)$      | 2.950(2.967)  |
| 15 | -sc | +sc | +sc | +sc | +sc | -111.218  (-111.220)          | 2.751(2.843)  |
| 11 | -sc | +sc | +sc | +ac | +ac | $-111.317\ (-111.318)$        | 2.615(2.699)  |
| 12 | -sc | +sc | +sc | -ac | -ac | $-111.316\ (-111.310)$        | 2.547 (2.575) |
| 14 | -sc | +sc | +sc | -sc | -sc | $-111.306\ (-111.307)$        | 2.660 (2.719) |
|    |     |     |     |     |     |                               |               |

 $<sup>^</sup>a$ P, C(Me)POC(PhI) angle; PI, O=POC(PhI); PII, O=POC(PhII); Ph, C(PhII)C(PhII)CC(PhIII) and, respectively, C(PhIII)C(PhIII)CC(PhII);  $\Delta$ H<sub>form</sub>, heat of formation;  $\mu$ , dipole moment; the values for the mirror image compounds are given in brackets, as resulted from the calculations.

the most stable dimers are combinations of two different monomers, except that formed by the monomer 3. However the 3-3 dimer has about 0.6 kcal/mole higher energy than the most stable mixed dimer (3–6, with calculated heat of formation  $\Delta H_{\rm form} = -247.172$  kcal/mole).

For the energetically most stable 25 dimers, we have tried to build up and optimize the corresponding tetramers, but only 14 of these allow the construction without considerable steric hindrance.

A certain sterical disability to adopt energetically stable ordered structures by regular repetition of some low energy monomer or dimer units is found out. This would represent the origin of the partially crystalline structure of the polymer.

### REFERENCES

- [1] A. R. Leach, in *Reviews in Computational Chemistry II*, K. B. Lipkowitz and D. B. Boyd (eds.) (VCH Publ. Inc, New York, 1991), pp. 1–55.
- [2] R. Vâlceanu, G. Ilia, L. Kurunczi, and P. Şoimu, Phosphorus, Sulfur, Silicon and Relat. Elements, 111, 642 (1996).